From History of Physics at Sussex
Revision as of 11:50, 17 September 2011 by Mpfd7 (talk | contribs)
Jump to: navigation, search

John Venables: Electron Microscopy and Surface Physics

Introduction and Summary

Sussex Physics was a wonderful place to get a first "proper job". After a PhD in Cambridge and a 3-year post-doc period in Illinois, it was great to have an exciting new job, and to return to a beautiful and vibrant part of the UK. I wish to pay tribute to Ken Smith, our foundation Professor of Experimental Physics. It was Ken who appointed me to Sussex in the Autumn term of 1994. I had known Ken in Cambridge, where I assisted in his Part II Physics Laboratory as a graduate student. Work on Electron Microscopy was very strong in Peter Hirsch's Metal Physics group [1], and so I was able to get a post-doc position in the USA at the University of Illinois, and then join Sussex at a formative stage. 

This page is about the Electron Microscopy and Surface Physics research group at Sussex. We were not isolated in our interests, but had overlaps with the group on Particle-Solid interactions and also with other efforts in Condensed Matter Physics, Low Temperature Physics and Materials Science. Michael Thompson and Robert Cahn were both appointed to Professorships in 1965, in Physics and Materials Science respectively. These appointments and those that followed greatly increased the possibilities for collaboration, both in research and graduate level and specialist undergraduate teaching across departmental lines. And, although we were passionate about our Science and research in particular, Sussex was a place where many other activities, especially of an interdisciplinary nature, were encouraged.  

Sussex literally gave me, and by extension all of us, a chance to do my "own thing", and I feel very grateful to have been able to take that, and build on it in my/our own  way. The "our" is important of course, since without collaborators, technical help, students and especially graduate students, one can do very little in experimental physics or any other experimental science. I have been particularly fortunate in all these aspects: the fact that we had an excellent Mechanical Workshop under Frank Schofield made all sorts of technical developments in Transmission Electron Microscopy possible from the start. Later, we also used the staff of the Electronics Workshop as well, to keep ahead of developments in Scanning Electron Microscopy. Some of these aspects will be described in the two sections that follow

One of the great possibilities offered by this Wiki form of history, is that all of our collaborators can contribute whatever they want or have time for. I am still very much in contact with one of my two first graduate students, George J. Thomas, and the other David J. Ball, can be found via a simple Google searches. Both have had distinguished careers in the US National Laboratory system, and as a Professor/Consultant on Risk Management in the UK respectively.  My long-term technician, Chris Harland, who subequently got a PhD himself, and after spells in Industry, became Reader in Electronics at Sussex.

I am not planning to transfer the group publication list to this site, since there is already a complete list on my Arizona State University site [2]. I retired from Sussex in January 1995, but have been associated with the University since as an Honorary Professor, and currently as Emeritus Professor. The list of group members ends at 1995, but that is not the end of the story: Michael Hardiman, Senior Lecturer in Physics, continues research but in a somewhat different field. I have continued research in Arizona, at the London Centre for Nanotechnology at UCL, and with several colleagues around the world.

I look forward to possibly remaking contact with several other former co-workers via this celebration of Sussex@50. If any of you wish to elaborate on my account here, that will be wonderful.

References

1. Members of the Metal Physics group were much in demand worldwide at the time, and produced the "Bible", Electron Microscopy of Thin Crystals (Butterworths, London, 1965) following a succesful summer school in July 1963. The authors, P. B. Hirsch FRS, A. Howie, R.B Nicholson, D.W. Pashley and M.J. Whelan, all be came very well known for a whole "School" of Electron Microscopy that spread round the world. The authors went on to lead groups in Oxford (Professor Sir Peter Hirsch and Professor Mike Whelan, FRS),  Cambridge (Professor Archie Howie, CBE, FRS), Imperial College (Professor Don Pashley, FRS). Sir Robin Nicholson FRS, FREng was Chief Scientific Advisor, Cabinet Office from 1983-1985 during a long career in Industry and Academia.

2. Since 1985 I have been a Professor at Arizona State University in the Physics Department on a part-time basis. There I maintain a home page, which contains all my professional details, including teaching, research, publcations and short-form CV.

Research Activity 1: In-situ Transmission Electron Microscopy

Shortly after my arrival in Sussex, Professor Ken Smith signed a purchase order for a Hitachi HU 11B Electron Microscope. This was for £11, 600 or thereabouts, a large sum of money in 1964: but of course without a microscope we could do nothing. This instrument became the workhorse of the early years of the group, and it got heavily modified, several times, in the process. I had decided to try my hand at what became known as In-situ Microscopy: performing experiments on the samples inside the microscope and observing them at the same time, or shortly afterwards with out breaking the vacuum.

In particular, we constructed a variable temperature stage that was cooled by liquid helium. Liquid helium was in more or less plentiful supply at Sussex from early on, due to the presence in the Department of the Low Temperature group. The Mechanical Workshop staff were crucial in the fine scale machining needed to make several versions of the low temperature stages and accessories over a long period

With my first two graduate students, we started on our first two scientific topics, outlined below: "Electron microscopy of low energy ion damage in Metals" with George Thomas (DPhil 1969), and  "Nucleation, growth and defect structure of Rare Gas Solids" with David Ball (D.Phil 1969). The first project involved construction a removable low energy ion gun to fit above the stage. The second involved various cells and directed gas beams to grow the crystals at well defined pressures and temperatures. While the projects started out in an exploratory manner, they nearly all became quantitative studies with T and p (and ion current) as the independant variables.

This (thermodynamic) motivation became particularly important later on, when the aging microscope was converted into a high precision diffraction camera. It was used to study the monolayer phases of rare gases adsorbed on graphite with high precision. The microscope and surrounding equipment is shown in this latest incarnation in Figure 1 below. The schematic diagram of what is essentially going on in the neighbourhood of the thin film sample is shown in Figure 2 (below right). For more details the relevant theses and publciations can be consulted, but for now, a lot of good work was accomplished on this machine by quite a few graduate students, post-docs, visitors and technical staff. Indeed I enjoyed taking some interesting pictures and diffraction patterns myself...

TEM-1 001.jpg
TEM-1 003.gif

Low Energy Ion Damage in Metals

This activity was a follow-op of work I had done on Ion Bombardment as a post-doc in Illinois: indeed George Thomas was an hourly worker in the Lab there, who made the courageous decision to follow me to Sussex for a PhD, courtesy of a grant from the US Air Force (who also supported David Ball). Low energy ion bombardment produces Interstitial atoms from the bombarded surface, and this was studied using Stereo-Electron Microscopy of gold containing vacancy terahedra (produced by quenching from high T as shown by John Silcox in his Cambridge PhD, now at Cornell). So the interstials migrate to the vacancy defects and cancel them out in a variety of wonderful ways, which were expected to depend on the bombardment temperature. In the end we found out that it depended on the purity of the starting material, as so often happens in defect physics.

The results contributed to ongoing sagas about Interstitials in metals, written up in a thorough paper by G.J. Thomas and myself (Phil. Mag. 28 (1973) 1171-1201). This paper was preceded by two reviews in 1969 and 1970 and several conference papers.



They didn't within our T-range, though lots of interesting data were found      

Nucleation, Growth and Defect Structure of Molecular Solids

Monolayer Phases of Adsorbed Gases on Graphite

 ***

Research Activity 2: Ultra-high Vacuum Scanning Electron Microsocopy

Research Activity 3: Related Theoretical and Computational Studies

Appendix: Group Members

This list includes all categories of colleagues in approximate historical order (of starting), and is not at present complete. I would like to hear of omissions.

The abreviations are: Faculty associated with the group, even if loosly (F), Graduate Student (GS); Research Fellow (RF), Technical Staff (TS), Visiting Faculty (VF), Visiting Researcher (VR), Visiting and Exchange Student (VE), Project Student (PS), typically for a final year project.

Names, graduation dates and thesis titles for Physics D.Phil and M. Phil students are given in the list on this site.

There is no detail on the source of funding for anyone person or project, since this typically changed with time.

1964-1969

For thesis dates and  titles click Research-dphil_p_by_year_early

John A. Venables (F)

George J. Thomas (GS)

David J. Ball (GS)

John S. Notton (TS)

Henry R. Gylde (RF with Brian Smith)

Daniel R. Frankl (VF- Professor, Pennsylvania State University)

Dirk van Vliet (RF)

Colin A. English (GS)

H. Michael Kramer (GS)

Keith Davies (TS)

1970-1979

For thesis dates and titles click here

Christopher J. Harland (TS)

Barrie W. Griffiths (GS)

Karl F. Niebel (GS)

Klaus H. Ecker (GS)

Garth L. Price (GS)

Gordon J. Tatlock (RF)

Ramli Bin-Jaya (GS, MSc student)

Adrian P. Janssen (RF)

Bruce A. Joyce (VF, Group leader at Mullards/ Phillips Redhil)

Terry E. Bricheno (RF, also GS with Brian Smith)

Michel Bienfait (VF,  Professor at Aix-Marseille II)

Jonathan H. Klein (GS, MSc student)

Remy Mevrel (RF)

George S. Samuel (GS)

Pablo Schabes-Retchkiman (GS)

Klaus Hartig (VR, Research student at Bochum)

Parvez Akhter (GS)

Jacques Derrien (VF, Professor at Aix-Marseille II)

Gary D. Archer (GS, MSc student)

Jeff Spain (TS)

Arthur C. Sinnock (VF with Brian Smith, Brighton Polytechnic)

1980-1989

For thesis dates and titles click here

Geoff D.T. Spiller (RF)

Graeme Raynerd (GS, then RF)

Jean Suzanne (VF, Professor at Aix-Marseille II)

David J. Fathers (RF)

Michael Hardiman (F, "New Blood" Lecturer from 1983)

Jean-Jacques Metois (VF, CRMC2-CNRS Marseille)

Ludwig W. Bruch (VF, University of Wisconsin)

Margrit Hanbücken (RF)

Jean-Marie Bermond (VF, Professor at Aix-Marseille III)

Robert J. Keyse (GS)

David R. Batchelor (GS)

Masaaki Futamoto (VR, Hitachi Central Laboratories, Tokyo)

Gareth W. Jones (GS)

Oladipo (Ladi) Osasona (VR, Universiy of Ile-Ife, Nigeria)

Abdul-Qader D. Faisal (GS)

Marilyn Whitehouse-Yeo (TS)

Mohamed Alikacem (GS, MSc student)

Mohamed Hamichi (GS)

Albert E. Curzon (VF, Professor at Simon Fraser University, Burnaby, BC)

Gerhard Cox (GS, MSc student, and Diplom 1986, RWTH, Aachen)

Timothy Doust (GS)

Robert Kariotis (RF)

Parmjit S. Flora (GS)

Min Huang (GS)

Frances L. Metcalfe (GS)

1990-1995

For thesis dates and titles click here

Jesus M. Marcano (RF)

E. Hoffman (VE)

Pontus Stenström (VE, 1991)

Robert H. Milne (F, 5-year fixed term Lecturer from ?)

Mohamed Azim (GS with Bob Milne)

Michael Stumpf (VE, 1993)

Örjan Bodin (VE, 1993)

T. J. Martin (PS? with Bob Milne)

T.E. Amine Zerrouk (GS)

Raj Persaud (RF)

Hisato Noro (GS)

Akira Sugawara (VR from Japan and Arizona State)